Copied to
clipboard

G = C42⋊He3order 432 = 24·33

The semidirect product of C42 and He3 acting via He3/C32=C3

metabelian, soluble, monomial

Aliases: C42⋊He3, C1221C3, C62.3A4, C32⋊(C42⋊C3), (C4×C12).5C32, C22.(C32⋊A4), (C3×C42⋊C3)⋊C3, C3.5(C3×C42⋊C3), (C2×C6).10(C3×A4), SmallGroup(432,103)

Series: Derived Chief Lower central Upper central

C1C4×C12 — C42⋊He3
C1C22C42C4×C12C3×C42⋊C3 — C42⋊He3
C42C4×C12 — C42⋊He3
C1C3C32

Generators and relations for C42⋊He3
 G = < a,b,c,d,e | a4=b4=c3=d3=e3=1, ab=ba, ac=ca, ad=da, eae-1=ab-1, bc=cb, bd=db, ebe-1=a-1b2, cd=dc, ece-1=cd-1, de=ed >

Subgroups: 363 in 57 conjugacy classes, 13 normal (10 characteristic)
C1, C2, C3, C3, C4, C22, C6, C2×C4, C32, C32, C12, A4, C2×C6, C2×C6, C42, C3×C6, C2×C12, He3, C3×C12, C3×A4, C62, C42⋊C3, C4×C12, C4×C12, C6×C12, C32⋊A4, C3×C42⋊C3, C122, C42⋊He3
Quotients: C1, C3, C32, A4, He3, C3×A4, C42⋊C3, C32⋊A4, C3×C42⋊C3, C42⋊He3

Smallest permutation representation of C42⋊He3
On 36 points
Generators in S36
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 4 2 3)(5 8 6 7)(9 12 10 11)(13 16 15 14)(17 20 19 18)(21 24 23 22)
(13 24 19)(14 21 20)(15 22 17)(16 23 18)(25 29 33)(26 30 34)(27 31 35)(28 32 36)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 24 19)(14 21 20)(15 22 17)(16 23 18)(25 33 29)(26 34 30)(27 35 31)(28 36 32)
(1 27 13)(2 25 15)(3 26 16)(4 28 14)(5 31 19)(6 29 17)(7 30 18)(8 32 20)(9 35 24)(10 33 22)(11 34 23)(12 36 21)

G:=sub<Sym(36)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,4,2,3)(5,8,6,7)(9,12,10,11)(13,16,15,14)(17,20,19,18)(21,24,23,22), (13,24,19)(14,21,20)(15,22,17)(16,23,18)(25,29,33)(26,30,34)(27,31,35)(28,32,36), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,24,19)(14,21,20)(15,22,17)(16,23,18)(25,33,29)(26,34,30)(27,35,31)(28,36,32), (1,27,13)(2,25,15)(3,26,16)(4,28,14)(5,31,19)(6,29,17)(7,30,18)(8,32,20)(9,35,24)(10,33,22)(11,34,23)(12,36,21)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,4,2,3)(5,8,6,7)(9,12,10,11)(13,16,15,14)(17,20,19,18)(21,24,23,22), (13,24,19)(14,21,20)(15,22,17)(16,23,18)(25,29,33)(26,30,34)(27,31,35)(28,32,36), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,24,19)(14,21,20)(15,22,17)(16,23,18)(25,33,29)(26,34,30)(27,35,31)(28,36,32), (1,27,13)(2,25,15)(3,26,16)(4,28,14)(5,31,19)(6,29,17)(7,30,18)(8,32,20)(9,35,24)(10,33,22)(11,34,23)(12,36,21) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,4,2,3),(5,8,6,7),(9,12,10,11),(13,16,15,14),(17,20,19,18),(21,24,23,22)], [(13,24,19),(14,21,20),(15,22,17),(16,23,18),(25,29,33),(26,30,34),(27,31,35),(28,32,36)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,24,19),(14,21,20),(15,22,17),(16,23,18),(25,33,29),(26,34,30),(27,35,31),(28,36,32)], [(1,27,13),(2,25,15),(3,26,16),(4,28,14),(5,31,19),(6,29,17),(7,30,18),(8,32,20),(9,35,24),(10,33,22),(11,34,23),(12,36,21)]])

56 conjugacy classes

class 1  2 3A3B3C3D3E···3J4A4B4C4D6A···6H12A···12AF
order1233333···344446···612···12
size13113348···4833333···33···3

56 irreducible representations

dim1113333333
type++
imageC1C3C3A4He3C3×A4C42⋊C3C32⋊A4C3×C42⋊C3C42⋊He3
kernelC42⋊He3C3×C42⋊C3C122C62C42C2×C6C32C22C3C1
# reps16212246824

Matrix representation of C42⋊He3 in GL3(𝔽13) generated by

1200
080
008
,
800
050
001
,
100
090
003
,
900
090
009
,
010
001
100
G:=sub<GL(3,GF(13))| [12,0,0,0,8,0,0,0,8],[8,0,0,0,5,0,0,0,1],[1,0,0,0,9,0,0,0,3],[9,0,0,0,9,0,0,0,9],[0,0,1,1,0,0,0,1,0] >;

C42⋊He3 in GAP, Magma, Sage, TeX

C_4^2\rtimes {\rm He}_3
% in TeX

G:=Group("C4^2:He3");
// GroupNames label

G:=SmallGroup(432,103);
// by ID

G=gap.SmallGroup(432,103);
# by ID

G:=PCGroup([7,-3,-3,-3,-2,2,-2,2,169,1515,360,10399,102,9077,15882]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^3=d^3=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^-1,b*c=c*b,b*d=d*b,e*b*e^-1=a^-1*b^2,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations

׿
×
𝔽